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Abstract
An analytical formalism for the solution of cumulative

beam breakup in linear accelerators with arbitrary beam
current profile is developed.  It is applied to obtain an
expression for the transverse displacement of trains of
finite bunches.  The same formalism is used to investigate
the beam breakup-enhanced displacement of beams
caused by the misalignment of the deflecting structures or
focusing elements.

1 INTRODUCTION
Cumulative beam breakup (BBU) has been extensively

investigated in the past by many authors; the present work
is a continuation a previous investigation of BBU in the
case of bunches of finite length [1]. That previous
investigation was limited to steady state analysis, and we
extend it here to the analysis of the transient behavior of
arbitrary beams and, in particular, of finite trains of
bunches of finite length.  This extension is motivated by
the increasing interest in pulsed high-current
superconducting accelerators, and could also be applied to
the analysis of long-range effects in linear colliders.

2 EQUATION AND GENERAL SOLUTION
In a continuum approximation, the transverse motion of

a beam under the influence of focusing and BBU can be
modeled by [1]
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where   and  β γ  are the usual velocity and energy
parameters; /sσ = L , is the distance from the front of the
accelerator normalized to the accelerator length; κ  is the

normalized focusing wave number; ( )/ )t ds cζ ω β= −∫ , is

the time made dimensionless by the frequency ω  and
measured after the arrival of the head of the beam at
location σ ; ( ) ( ) /F I Iζ ζ= , the current form factor, is the
instantaneous current divided by the average current;

( )w ζ is the wake function, which, in the case of a single

dipole mode, is assumed to be / 2( ) ( ) sin Qw U e ζζ ζ ζ −= ; ε
is the coupling strength between the beam and the dipole
mode, and includes properties of the beam and the
deflecting mode of the accelerating structure.

Without loss of generality we will assume a coasting
beam, and constant BBU and focusing strengths along the
accelerator.  Under some reasonable assumptions, these
restrictions can often be relaxed and suitable coordinate
transformations can be introduced to transform the full

equation of motion to that of a coasting beam with
constant parameters [2].

Under these assumptions, the equation of motion
becomes
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Applying to Equation (1) the Laplace transform with

respect to the variable σ : ( ) ( )†, ,x x pσ ζ ζ  = � , and

assuming, for the sake of simplicity, that the beam enters
the accelerator off, but parallel to, the axis, i.e.

( ) ( ) ( )00, , 0, 0x x xσ ζ ζ σ ζ′= = = = ,

we obtain
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Using the right-hand side of this equation to replace

( )† ,x p ζ in the integral yields
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The same substitution for ( )† ,x p ζ  can be applied to

this last expression and repeated indefinitely.  This results
in the following series expansion for ( )† ,x p ζ :
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Applying the inverse Laplace transform to Equation (2)
gives the transverse displacement ( , )x σ ζ  for arbitrary

time ζ , location σ , beam current profile ( )F ζ , wake

function  ( )w ζ , and time dependence of the beam offset

at the entrance of the accelerator 0 ( )x ζ :
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Several remarks can be made about the expression for
( , )x σ ζ .  First, it is a series expansion in the powers of

the ratio of BBU coupling to focusing strength; when the
BBU is weak or the focusing strong, only a few terms
need to be kept.  Second, the dependence on the current
profile and wake function is limited to the functions

( )nh ζ .  Third, the functions ( )nh ζ  depend only on the
current or bunch profiles, not on their magnitude; that
magnitude is included in the coefficient ε .

3 EXAMPLES

3.1 Single, very short bunch
This formalism can be easily applied to the case of a

single very short bunch entering the accelerator with a
transverse offset 0x .  By very short we assume that the
bunch length is much shorter than the period of the dipole
mode, so the wake function can be assumed to be linear:

( )w ζ ζ= .  The functions ( )nh ζ  can be easily calculated:

( ) ( )
2

0 2 !

n

nh x
n

ζζ = , to give, for large σ  where an

asymptotic form for the Bessel functions can be used,
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This result was first obtained in [3].

3.2 Finite train of finite bunches
A more interesting application of Equation (3) is the

investigation of the transient behavior of a finite train of
finite bunches.  We assume that the bunches are separated
by ζ ωτ= , have a length αωτ , and that the charge has a
constant profile within each bunch, so that
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the wakefield is due to a single dipole mode:
/ 2( ) ( ) sin Qw U e ζζ ζ ζ −= ; and we look at the transverse

displacement of a particle located within bunch 1M + ,
and a (normalized) time αωτ φ  behind the head of that

bunch, so that [ ]Mζ ωτ αφ= + ; 0φ=  is the head of the

bunch while 1φ=  is its tail.
From Equation (3), the transverse displacement, at

location σ , for a particle arriving at time
[ ]Mζ ωτ αφ= +  is, to second order,
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An example is shown in Figure 1.
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Figure 1: Function 1 0( ) /h xζ  for the front of the bunch

( 0φ= ) as a function of bunch number for
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4 MISALIGNED ACCELERATING
STRUCTURES

The same method can be used to analyze the beam
displacement caused by a misalignment of the
accelerating structures and coupling to the dipole modes.
The transverse equation of motion becomes
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where ( )d σ  is the displacement of the accelerating

structure at location ,σ or more precisely the transverse
displacement of the axis of the dipole mode with respect
to the beam line defined by the focusing elements.
Applying the Laplace transform yields
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where we have assumed ( ) ( )0 00 and 0,x xζ ζ= =′ i.e. the

beam enters the accelerator on, and parallel to, the axis.
The right-hand side of the above equation can be used to
replace † ( , )x p σ in the second integral, and the same
process can be repeated indefinitely to give
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 Applying the inverse Laplace transform gives the
following expression for the transverse displacement of
the beam
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While a complete determination of ( , )x σ ζ  could be

obtained if one had complete knowledge of ( )d σ , only a
statistical determination is often available for the latter or
needed for the former.  The mean square displacement of
the beam at location σ  and time ζ  is given by
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and ( )dR u v− is the autocorrelation function of ( )d σ .

If one assumes that the structures have a length 0σ , are
displaced parallel to the axis, that their displacements are
uncorrelated from one structure to the others, and follow a
probability density of standard deviation 0d , then the

autocorrelation function ( )dR u v−  is
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In the limits 0 0 and 1,σ σ κ σ� �  a simpler model for

( )dR u v−  that allows closed-form calculation of the

functions ( )2
mnx σ  is ( )2
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values of ,κ σ the asymptotic form of ( )mi σ can be used:
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It is easy to show that the main contributions to

( )2 ,x σ ζ  will be from m n= :
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Applying this formalism to the case of a single, very
short bunch, the functions ( )nH ζ  can be easily obtained:
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Keeping only the first two terms gives
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a result first obtained in [3].  The front of the bunch
( 0)ζ = is not displaced but the bunch develops a tail that

varies as 2ζ  and whose magnitude increases as
1 1/ 2κ ε σ− as the bunch travels along the accelerator.

5 MISALIGNED FOCUSSING ELEMENTS
If, instead of the accelerating structures, the focusing

elements are displaced, the equation of motion for the
beam becomes
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where ( )d σ is now the displacement of the focussing
elements with respect to the beamline.

Under the same assumptions as above, and applying the
same formalism, the displacement of the beam is given by
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This expression looks similar to the one for displaced
accelerating structures, but with some important
differences: the sum includes the 0n =  term and the
indices for the functions 1( ) and ( )n nH iζ σ+  are different.

The mean square displacement can be calculated in a
similar fashion and is given by
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With the same assumptions as for misaligned structures,

and for a single very short bunch, this reduces to
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Keeping only the first two terms:
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In this case, the front of the bunch is displaced, even in
the absence of coupling to the dipole mode, and its
displacement varies as 1/ 2κ σ .  The bunch also develops a

tail that varies as 4ζ  and whose magnitude increases as
1 2 5 / 2κ ε σ− .  It can be noted that, whereas strong focusing

reduces the effect of coupling between the beam and the
dipole mode and inhibits the formation of a tail, it also
increases the rms displacement of the bunch resulting
from a misalignment of the focusing elements.
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